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Motion-to-Attention: Enhancing Attention Maps to
Improve Performance of Text-Guided Video Editing

Models
Seong-Hun Jeong*, Inhwan Jin*, Haesoo Choo*, Hyeonjun Na*, and Kyeongbo Kong

Abstract—Recent research in text-guided video editing aims
to extend image-based editing models to video domains. A
significant challenge in this transition is ensuring temporal con-
sistency across frames. However, existing methods often exhibit
limited editing accuracy when processing prompts associated
with motion, such as ”floating” or ”moving.” Our analysis in-
dicates that this limitation arises from inaccurate attention maps
corresponding to motion-related prompts. To address this, we
introduce the Motion-to-Attention (M2A) module, explicitly inte-
grating motion information for enhanced video editing precision.
Specifically, we first convert optical flow extracted from the video
into a comprehensive motion map. Optionally, users can specify
directional information to refine motion map extraction further.
The proposed M2A module incorporates two complementary
techniques: ”Attention-Motion Swap,” which directly substitutes
the imprecise attention map of motion prompts with the extracted
motion map, and ”Attention-Motion Fusion,” which adaptively
enhances attention maps based on the correlation with the
motion map using a carefully selected Fusion metric. Experimen-
tal validation demonstrates that incorporating our M2A mod-
ule into existing text-to-video editing frameworks significantly
improves both quantitative performance metrics (CLIP-Acc,
Masked PSNR, BRISQUE) and qualitative visual quality. Exten-
sive experiments and comparative studies confirm the superior
editability and robustness of our method over current state-of-
the-art approaches. Comprehensive results are publicly available
at https://currycurry915.github.io/Motion-to-Attention/.

Index Terms—Video editing, attention, optical flow, and vision
language model.

I. INTRODUCTION

UNPRECEDENTED advancements in image generation
and editing have recently been achieved through text-

guided diffusion models and large-scale language models.
Unlike traditional methods [1], which primarily perform global
edits using deep neural networks, contemporary research em-
phasizes precise and localized editing driven solely by user-
provided textual prompts [2]–[4]. Among these approaches,
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Prompt-to-Prompt (P2P) [2] facilitates semantic and localized
image editing by directly manipulating attention maps guided
by textual prompts, eliminating the need for external inputs
such as segmentation masks.

Parallel to image editing advancements, text-guided video
editing research is also rapidly progressing [5]–[7]. However,
video editing introduces unique challenges, particularly tem-
poral consistency across frames. Due to limited availability
of extensive text-video paired datasets, most existing methods
extend image-based models to video scenarios through zero-
shot approaches [8], [9] or fine-tuning techniques [5]. Nev-
ertheless, applying image-centric editing frameworks to video
frames independently often results in temporal inconsisten-
cies, compromising overall video quality. Recent studies thus
primarily focus on maintaining temporal coherence between
edited frames [7]–[13].

Despite advancements in T2V editing techniques, as shown
in Fig. 1, existing models struggle to accurately estimate
attention maps for motion-related prompts such as “floating,”
“moving,” “spreading,” and “parking.” These inaccuracies
prevent the editing results from fully reflecting the intended
meaning of the target prompt, often leading to incomplete
edits or unintended disappearance of objects. This issue is
attributed to the direct extension of text-guided image models
to the video editing domain, which does not adequately
capture motion information inherent to videos. This limitation
indicates that such models are not trained enough to handle
motion-representing prompts. Inaccurate attention maps not
only restrict the editability of motion prompts but also un-
dermine the effective editing of moving objects, ultimately
limiting the performance of current T2V editing approaches.

In this paper, we introduce a method to enhance the attention
map in text-guided video editing by extracting motion infor-
mation from video. We essentially use optical flow [14], which
is widely used in various video tasks to utilize motion infor-
mation. The optical flow method can extract highly accurate
motion information by estimating the change in pixels between
video frames. We extract only the magnitude information from
the optical flow to utilize it as a motion map. This motion
map represents the regions indicated by the motion prompt.
Furthermore, since the optical flow contains both magnitude
and direction information, we can distinguish regions moving
in a specified direction and represent them as a motion map.
Based on this information, we propose an optional method
for editing only the regions moving in a specific direction
within a video by utilizing the motion map extracted with the
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Fig. 1. This figure visualizes the results of the T2V model for the input video and its corresponding attention map, confirming the inaccurate estimation
of the motion prompt (e.g., floating, moving). The existing T2V model failed to accurately estimate the attention map for the motion prompt, resulting in
restricted editability. The proposed Motion-to-Attention (M2A) module improves the attention map of the entire prompt, demonstrating enhanced editability
for existing video editing models.

specified direction information. We call this method Direction
Guidance, which is performed only when the user provides
direction information. If no direction information is provided,
only magnitude information is used.

Our primary contribution lies in effectively integrating the
estimated motion map with the attention map to enhance
video editing precision. To this end, we introduce the Motion-
to-Attention (M2A) module, which comprises two comple-
mentary approaches: Attention-Motion Swap and Attention-
Motion Fusion. Attention-Motion Swap directly substitutes
the inaccurate attention map of the motion prompt with the
precise motion map, immediately improving editing accuracy.
However, while this method addresses inaccuracies specific
to motion prompts, it does not fully leverage the corre-
lation between the motion map and other attention maps
within the prompt. To overcome this limitation, Attention-
Motion Fusion optimizes the integration of the motion map
by adaptively refining associations with other attention maps
in the prompt. This adaptive integration is achieved by cal-
culating a Fusion metric that assesses pixel-level, spectral,
and informational correlations, enabling the selection of the
most effective weighting mechanism. By combining these two
methods within the M2A module, we significantly improve the
editing accuracy and effectiveness of areas targeted by motion-
related prompts compared to conventional approaches.

The contributions of our paper are as follows:

• We found that inaccurately estimating the attention map
for prompts indicating essential movements in text-guided
video editing reduces video editability. Our study raises
the necessity of enhancing the attention map in video edit-

ing and is the first to introduce a method for enhancing
the attention map of video through motion information
estimated using existing optical flow. By utilizing direc-
tional information present in optical flow, the proposed
method enables the identification and editing of regions
corresponding to movements in a user-specified direction.
This approach allows for more precise and controlled
editing, accommodating specific editing needs based on
motion direction.

• We verified that applying the M2A module to exist-
ing attention-based text-guided video editing models im-
proves the performance.

II. RELATED WORK

A. Text-Guided Image/Video Editing

Unlike the traditional field of image processing research
[15], which relied on relatively simple deep neural networks
to remove general noise or other artifacts from images, recent
research of text-guided image editing [16] uses a variety of
generative models. The diffusion model [17], which is among
the most prevalently used generative models in recent times,
operates by either introducing noise into or eradicating noise
from the input image. Research on video editing using other
generative models [18] is also being continuously conducted,
but most recent studies are based on the diffusion model.
Subsequent video editing research diverges into two primary
paths: 1) P2P based Model, 2) Non-P2P based Model.

Among P2P based Models, Video-P2P [7] divides its
framework into two branches—one for unchanged parts and
another for edited parts—and incorporates each attention
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Fig. 2. The left side of the figure shows the overall framework of video editing by enhancing the attention map. First, the Text-to-Video (T2V) Model generates
an attention map by receiving video and prompts as input. Simultaneously, the optical flow estimation model estimates the optical flow from the input video
frames. The estimated optical flow is converted to a motion map by default using only magnitude information. Optionally, when direction information is
provided by the user, the Direction Control converts the optical flow to a motion map that only shows movement in the user-specified direction. If the user
indicates directional words with [], the model captures the direction information and performs Direction Control. Then, the motion map is injected into the
attention map of the T2V-Model in two ways from the M2A module: Attention-Motion Fusion and Attention Motion Swap. After that, text-to-video editing
is performed using the attention map enhanced by the motion map. The right side of the figure shows how the Attention-Motion Swap and Attention-Motion
Fusion of the M2A module enhance the attention map with the motion map.

map to enable detailed editing. Alongside the aforementioned
works, vid2vid-zero [8] achieves stable video editing and
reconstruction by integrating cross-frame attention into the
U-Net structure of an existing diffusion model. Additionally,
FateZero [9] is zero-shot based and maintain the video’s
temporal consistency through the enforcement of the attention
map.

Among Non-P2P based Models, ControlVideo [19] main-
tains temporal consistency in a manner similar to Pix2video
[20], but it employs the editing method of the existing Control-
Net [21] for performing edits. TokenFlow [10] improves the
temporal consistency of the video by enforcing the semantic
correspondences of diffusion features, recognizing that the
internal representation of the diffusion model exhibits simi-
lar properties across frames. Control-A-Video [11] integrates
motion and content priors, introducing motion-adaptive noise
initialization strategies to enhance the consistency and quality
of the video. Object-aware Video Editing [22] reduces cross-
frame attention costs by separating objects from the back-
ground and merging redundant background tokens. Diffusion
Noise Injection (DNI) [23] improves editing accuracy by
filtering initial latent noise with a spectral bandpass filter.
SliceEdit [24] employs pre-trained T2I diffusion models to
process spatial and spatiotemporal slices, leveraging the simi-

larity between video slices and natural images. VidTome [25]
enhances temporal consistency by aligning and compressing
redundant tokens across frames.

B. Optical Flow Estimation

Estimating the motion of objects in a video sequence is
the major goal of a computer vision task. The first fully
convolutional neural network to estimate optical flow was
called FlowNet [26]. Subsequently, a series of works, includ-
ing RecSPy [27], and RAFT [28] were proposed to reduce
computational costs by using a coarse-to-fine and iterative
estimation method. We generate the optical flow of the video
using the most recent optical flow estimation model, UniMatch
[14]. The proposed module is not dependent on UniMatch,
can use various optical flow estimation models, and has
stable performance. To demonstrate this, we conducted an
experiment about UniMatch [14] and RAFT [28], another
optical flow estimation models.

C. Fusion Metric

We aim to examine metrics that can quantitatively measure
the association between the attention map and the motion
map in the image domain, spectral domain, and information
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domain. Traditionally, various methods have been used to
measure the association between two images in the image
domain, and we utilize three methods: Squared Difference
[29], Cross Correlation [30], and Correlation Coefficient [31].
Squared Difference [29], which squares the differences in
pixel values at each location and then calculates the sum
of these values over all locations, is also commonly used to
calculate association. Additionally, we use Cross Correlation
[30], which calculates the association between two images by
summing the product of their pixel values. We also use the
Correlation Coefficient [31], which is calculated by consider-
ing the mean and standard deviation, to measure association.
In the spectral domain, we use Spectral Angle Mapper [32],
which calculates the association by comparing the angles
between the spectral represented by each pixel in the two
images. In the information domain, we use Mutual Information
[33], which measures the association between two images by
considering the pixel values of the images as random variables
and assessing how much the values change together.

III. PROPOSED METHOD

Before delving into the specifics, we first provide an
overview of our framework depicted in Fig. 2. The M2A
module is built into our framework as an addition to the T2V
model.

Let the input video be V , which consists of frames. As in
the Prompt-to-Prompt (P2P) [2] setting, we define the source
prompt as P and the target prompt as PT . In the source
prompt, the prompt containing motion information of the video
is called the motion prompt PM (e.g. ‘running’, ‘moving’).
PM within the P are indicated by the user using {}, such
as “a {moving} car”. Furthermore, users can specify a di-
rectional information D using the provided GUI. This allows
the extraction of a direction vector and the angle between
the vector and the origin. Utilizing this angle, the motion in
the specified direction within the optical flow is identified.
First, the T2V model receives the frames of the input video
V and a source prompt P as input and generates an attention
map A indicating the regions represented by the words in the
prompt within a single frame. Simultaneously, the optical flow
estimation model receives the frames of the input video and
estimates the optical flow Vflow. To utilize only the magnitude
values of the Vflow, we apply L2 normalization to convert
the Vflow into a motion map M. Additionally, if the user
provides directional information D, we propose an optional
method called Direction Guidance, which extracts only the
movement information in the user-specified direction D from
the optical flow Vflow and converts it into a motion map MD.
The proposed M2A module, which includes the Attention-
Motion Swap and the Attention-Motion Fusion, enhances the
attention map A∗ by injecting the estimated motion map
M. Subsequently, in the Attention Control process of the
P2P model used for editing in the T2V-Model, the enhanced
attention map A∗ estimated by the proposed method is utilized
to perform video editing.

In Sec. III-A, we introduce the attention map A as prior
knowledge. In Sec. III-B, we describe the method of extracting

a motion map from the optical flow. Additionally, we explain
how to specify the areas moving in the direction input by the
user and extract motion maps only for those corresponding
areas. In Sec. III-C, We explain the two methods of the M2A
module, including “Attention-Motion Swap” and “Attention-
Motion Fusion”. In Sec. III-D, we explain Fusion Metric for
calculating the Fusion score F used in “Attention-Motion
Fusion”. In Sec. III-E, we briefly explain the process of editing
a video through Attention Control in P2P, the editing model
used by the T2V model, based on the enhanced attention map
provided by the proposed M2A module.

A. Attention Map

P2P [2] is a text-guided image editing model that performs
editing by manipulating the attention map A in the image
domain. The attention map A estimated through P2P’s cross-
attention layer visually represents the correlation between a
word and an image. The attention map A can be calculated
as follows:

A = Softmax

(
QKT
√
d

)
, (1)

The spatial features of the image are transformed into the
query matrix Q, and the text embeddings are transformed
into the key matrix K and value matrix V . To calculate the
similarity between the spatial features Q of the image and the
text embeddings K, the two matrices are multiplied. To align
the dimensions of the matrices, a transpose is performed on
the K matrix. d represents the dimensionality of the query and
key. Afterwards, each pixel value is converted to a probability
value by applying the softmax function.

The T2V model edits the video by replacing or refining the
estimated attention map of the source prompt with the attention
map of the target prompt. Before this process, we swap the
attention map of the motion prompt in the source prompt with
the motion map. Then, we enhance the attention map of the
entire prompt with the motion map before proceeding with the
subsequent process.

B. Motion Map Extraction

We obtain the optical flow Vflow = (u, v) through the
pre-trained optical flow estimation model [14] where u and
v represent the movements in the x axis and y axis directions
of the optical flow vector, respectively. In this paper, the
goal is to enhance the attention map A utilizing this optical
flow. We extract a motion map M with magnitude values by
applying L2 norm to the estimated optical flow. The formula
for obtaining the motion map M by applying L2 normalization
to the optical flow Vflow = (u, v) is as follows:

M =
√

u2 + v2. (2)

Since optical flow Vflow is a vector with both magnitude and
direction, we apply L2 normalization to the optical flow to
extract only the magnitude information and use it as a motion
map M.

Additionally, we propose Direction Guidance, which al-
lows for the editing of only the regions that exhibit movement
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Fig. 3. The process of Direction Guidance. The user first specifies the
target motion direction by selecting a region of interest in the video. An
optical flow estimation model is then applied to extract optical flow across
frames. The directional information is computed using the arctangent function,
which derives the motion orientation for each pixel. Subsequently, a masking
operation is performed based on a threshold δ to retain only the regions
exhibiting movement in the user-defined direction. This process enables
precise control over motion-aware editing by isolating directional motion
components.

in a specific direction by utilizing not only the magnitude
but also the directional information of the optical flow Vflow.
Direction Guidance is an optional method that is activated only
when direction information is provided by the user. As shown
in Fig. 3, when Direction Guidance is applied after obtaining
the target directional information θtarget, we extract only the
motion that aligns with this target direction for each pixel in
the optical flow field (u, v). For each pixel, we first compute
the angle θ of its optical flow vector as follows:

θ = arctan(u, v). (3)

Given the target direction θtarget and an allowable tolerance
δ, we then define a mask M as:

M(ij) =

{
1, if (θtarget − δ) ≤ θ(i, j) ≤ (θtarget + δ),

0, otherwise,
(4)

where (i, j) denotes the pixel location within the image. This
mask is applied element-wise to the optical flow components
to suppress motion that does not fall within the specified
directional range:

ũ(i, j) = M(i, j) · u(i, j), ṽ(i, j) = M(i, j) · v(i, j) (5)

For the filtered optical flow Ṽflow = (ũ, ṽ), the motion map
M is computed by applying the L2 normalization. Through
this, we can specifically extract the regions in the optical flow
that are moving in the user-provided direction.

The motion map M extracted using this method is injected
into the attention map A through the proposed M2A module,
thereby enhancing the attention map A. The enhanced atten-
tion map A∗ is then provided to the T2V model.

C. Motion-to-Attention Module

As discussed in the Introduction, existing video editing
models rely on generative models trained on text-image pair
datasets. As a result, they fail to accurately capture the
attention map of motion prompts in videos, which represent
movement. This inaccurate attention map limits the perfor-
mance of video editing. To address this issue, we propose
“Motion-to-Attention,” which consists of two methods: 1)

Fig. 4. The proposed Motion-to-Attention (M2A) module, which leverages
the motion map to enhance the attention map. The M2A module replaces
the inaccurate attention map of the motion prompt with the motion map
(Attention-Motion Swap) and injects the motion map into other attention
maps (Attention-Motion Fusion), thereby improving the performance of video
editing.

Attention-Motion Swap and 2) Attention-Motion Fusion. The
pseudo code for the entire algorithm is provided in Alg
1. Additionally, Fig. 4 illustrates the overall process of the
proposed M2A module.

Algorithm 1 Motion-to-Attention (M2A) Module
Input: Attention maps of entire source prompt A,

Motion map M,
Number of source prompts N ,
Index of motion prompt j,
Fusion score F ,
Hyperparameter for motion map injection rate λ,
Denoising timestep in diffusion model t

Output: Enhanced attention maps of entire source prompt A∗

1: for k = 1, 2, ..., N do
2: if k = j then
3: # Apply Attention-Motion Swap for motion prompt
4: A∗

k = λ · M
5: else
6: # Apply Attention-Motion Fusion for non-motion prompts
7: A∗

k = Ak + λ · Fk·M
t

8: end if
9: end for

10: return A∗

1) Attention-Motion Swap: In Fig. 1, we observe that exist-
ing T2V models fail to accurately estimate the attention map
AM for the motion prompt PM , which negatively impacts their
video editing capabilities. To address this issue, Attention-
Motion Swap replaces the inaccurate attention map AM with
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the motion map M, representing the motion information in
the video. The motion map M extracted in the previous step
is resized to match the size of the attention map A. Next, the
values of M are normalized between 0 and 1 by dividing them
by the maximum value of the motion map. This normalization
ensures compatibility with the attention map A, which is
represented as a probability map with values ranging from 0
to 1. After aligning the dimensions and scales of the attention
map and motion map, Attention-Motion Swap is processed
according to the following equation:

Ak = λ · M, if Ak = APM , (6)

where λ is a hyperparameter that controls the injection rate
of the motion map and APM is attention map of motion
prompt PM. By directly replacing the inaccurate attention
map with the motion map, Attention-Motion Swap improves
the editability of the T2V model. The input prompt and video
frames first pass through a self-attention layer, followed by a
cross-attention layer. Through self-attention, information from
individual prompts is related, creating association between
the motion prompt’s attention map and the attention maps of
other prompts. Although the Attention-Motion Swap method
addresses inaccuracies in the motion prompt’s attention map
by replacing it with the motion map, this approach does not ac-
count for the inherent associations between the motion prompt
and other prompts. Consequently, although some improvement
in editing quality can be achieved, the inability to consider
these associations limits the overall accuracy and consistency
of the editing process. To overcome this limitation, a sup-
plementary method capable of incorporating the relationships
between the motion prompt and other prompts is essential.

2) Attention-Motion Fusion: Attention-Motion Fusion
leverages the association between the motion map and the
attention map to improve the attention maps across the prompt,
excluding the motion prompt. The Fusion score F , which
quantifies the association between the attention map and the
motion map, is computed using Fusion Metrics. Detailed
descriptions of these Fusion Metrics are provided in Sec.
III-D. The computed Fk is used as a weight to account for
the association between the attention maps across the entire
prompt. Based on this, the enhanced attention map A∗

k is
calculated as follows:

A∗
k = Ak + λ · (Fk · M)

t
, if Ak ̸= APM , (7)

Where λ is a hyperparameter for adjusting the weight of
the motion map during integration into the attention map.
By sharing the same λ value across both Attention-Motion
Swap and Attention-Motion Fusion, consistency in scaling is
maintained for all motion maps. This ensures that motion maps
are uniformly scaled, enabling their effective integration into
the attention map without introducing inconsistencies.

The parameter t represents the denoising step in the diffu-
sion process of the T2V model. In the early stages of the
diffusion process, the t value is low, allowing the motion
map to exert a strong influence on the overall structure of the
attention map. This ensures that the foundational motion in-
formation is adequately incorporated. As the diffusion process

progresses, the t value increases, which progressively reduces
the influence of the motion map. This approach enables the
refinement of details and ensures that the edited content aligns
seamlessly with the target prompt.

Therefore, Attention-Motion Fusion and Attention-Motion
Swap serve as complementary methods. By using both ap-
proaches together, more precise and effective editing can be
achieved, significantly improving overall editing performance.

D. Fusion Metric
In Attention-Motion Fusion, to calculate the Fusion score

F between the attention maps A of the entire prompt and the
motion map M, we utilize various Fusion Metrics. To calcu-
late the Fusion score F between the two maps, we consider
various metrics that quantitatively measure the association in
the image domain, spectral domain, and information domain.
The attention map, which represents the correlation between
the words in the input prompt and the image as a pixel-
wise probability value, and the motion map, derived from the
magnitude of the optical flow divided by its maximum value,
both have values ranging from 0 to 1. Since the motion map is
resized to match the size of the attention map, the association
between the two maps can be quantified by calculating the
Fusion score F .

1) Fusion Metric in Image Domain: In the image domain,
the association between two images is measured using pixel
values. Traditional methods such as Squared Difference [29],
Cross correlation [30] and Correlation coefficient [31] are
commonly used to calculate the Fusion score F . The Squared
Difference [29] metric computes the Fusion score as the
sum of squared differences between pixel values, defined as
F =

∑
(A(x, y)−M(x, y))2, where (x, y) denotes the pixel

coordinates. This method is useful for directly evaluating
the absolute differences between two images. On the other
hand, Cross Correlation [30] measures structural similar-
ity by summing the product of pixel values, calculated as
F =

∑
A(x, y)M(x, y) . This Cross Correlation [30] can

measure the structural similarity between the two images,
allowing for an accurate assessment of the similarity between
the attention map A and the motion map M. Lastly, the
Correlation Coefficient [31] normalizes the values of the
pixels using their mean µ and standard deviation σ, allowing
the measurement of association in a scale-invariant manner.
Unlike Squared Difference or Cross Correlation, this method
ensures consistency by addressing scale variations between the
attention map and the motion map. These metrics collectively
allow for a precise calculation of the association between the
two maps, facilitating accurate Fusion.

2) Fusion Metric in Spectral Domain: To calculate the
Fusion score F between the attention map A and the motion
map M, we use the Spectral Angle Mapper (SAM) [32].
SAM compares the angles between the spectral vectors of
pixels to measure the association between two images. This
has the advantage of not being affected by the pixel value
magnitudes of the attention map A and the motion map M.
The spectral angle θ between two pixels is defined as:

θ = cos−1

(
a ·m

∥a∥∥m∥

)
, (8)
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where a and m are the spectral vectors of pixels from the
attention map and the motion map, respectively, and · denotes
the dot product.

3) Fusion Metric in Information Domain: To measure the
association between the attention map A and the motion map
M in information domain, we use Mutual Information (MI)
[33] in the information domain. Mutual Information evaluates
the association based on probability distributions, accounting
for complex and nonlinear relationships. It quantifies the
amount of shared information between two images, enabling a
more comprehensive analysis. Mutual Information is defined
as:

MI(A,M) = H(A) +H(M)−H(A,M), (9)

where H(A) and H(M) represent the entropy of A and M,
respectively.

By using the previously described Fusion metrics, we mea-
sure the Fusion score F between the attention map A and
the motion map M and use it as a weight. To enhance the
attention map A with the motion map M, we multiply the
motion map M by the Fusion score F and then add it to the
attention map A.

The enhanced attention map A∗ is then provided to the T2V
model to perform video editing. The experimental results for
various metrics can be found in Fig. 8.

E. Text Guided Video Editing Using Enhanced Attention Map

The enhanced attention map A∗ through the proposed M2A
module is provided to the T2V model and utilized for video
editing. Several recent video editing models [7]–[9] extend the
image editing model, P2P [2], to the video domain for editing.
These video editing models mainly propose methods to ensure
that frame-by-frame editing is performed consistently, but the
method of editing the video is based on how P2P [2] edits
images. P2P [2] controls the attention map of the source
prompt P to the attention map AT of the target prompt PT to
edit images. The main methods are Replacing and Refinement.
The enhanced attention map A∗ of the source prompt is
replaced with the attention map AT of the target prompt. This
process can be expressed by the following equation using the
edit function Edit(·):

Edit(A∗
t ,A∗

T,t, t) :=

{
A∗

T,t if t < τ

A∗
t otherwise

, (10)

where t refers to the time step used in the diffusion model
within P2P, and τ is a parameter that determines when the
replacing operation is applied. Through the above method,
attention map A of source prompt P is replaced with attention
map AT of target prompt PT .

Otherwise, users want to change the style of the image
or attribute of certain object. For example, P = “a car” to
PT = “a red car”. In this case called prompt Refinement,
an alignment function L is used in order to preserve the
common parts, which matches the index of between P and
target prompt.

Edit
(
A∗

t ,A∗
T,t, t

)
i,j

:=

{(
A∗

T,t

)
i,j

if L (j) =None

(A∗
t )i,L(j) otherwise,

(11)

where index i corresponds to pixel value, and j corresponds
to word index.

IV. EXPERIMENTS

A. Experimental Setup
1) Baseline Model: We used the P2P based editing method,

which intuitively edits videos only with text by manipulat-
ing a cross-attention map, as our baseline in our module:
FateZero [9], Video-P2P [7], vid2vid-zero [8]. Additionally,
we compared the results with those of non-P2P-based models
among the latest studies with publicly released codes. These
models include Text2Video-Zero (T2V-Zero) [12], Tune-a-
video (TAV) [6], Control-A-Video (CAV) [11], Token-Flow
(TF) [10], SliceEdit (SE) [24], and VidToMe [25].

2) Dataset: The experiments were conducted using the
Davis video dataset [34], which is widely used in various
video generation and editing studies due to its high-quality
annotations and diverse video content. In addition to the
Davis dataset, we expanded our evaluation by incorporating
a collection of YouTube videos. These videos were selected
to introduce more variability in terms of content, motion
complexity, and environmental factors, ensuring that the pro-
posed methods were tested on a broader range of real-world
scenarios. This combination of datasets allowed for a more
comprehensive assessment of model performance.

3) Implementation details: We used RTX 3090 GPUs in
the experiment, and we set the image resolution to 512× 512
as in the existing FateZero [9]. The number of video frames
was set to 4 because this number is sufficient to demonstrate
how well our method achieves our goal. The optical flow was
extracted utilizing the UniMatch [14] model.

4) Evaluation Metrics: The proposed M2A module en-
hances the inaccurate attention map of the motion prompt
with a motion map, enabling both spatially and semantically
accurate video editing. To evaluate the performance of M2A,
we utilized three metrics: CLIP-Acc, Masked PSNR, and
BRISQUE.

To quantitatively evaluate the semantic alignment between
the edited video and the target textual prompt, we used the
trained CLIP model [35], which calculates a similarity score
between the textual prompt and the edited video. A higher
score indicates better alignment with the target prompt while
maintaining distinction from the source prompt. For structural
evaluation, Masked PSNR [7] was employed to measure how
well the unchanged regions in the video were preserved before
and after editing. The visual quality of the edited videos was
assessed using the No-Reference Image Quality Assessment
method, BRISQUE [36]. This metric evaluates the perceptual
quality of the edited videos without requiring reference data.

By combining CLIP-Acc for semantic accuracy, Masked
PSNR for structural preservation, and BRISQUE for visual
quality, this evaluation metrics comprehensively validates the
effectiveness of the proposed M2A module in enhancing video
editing.

B. Qualitative Results
Fig. 5 visually compares the results of the P2P based

model, the results of the P2P based model with our module
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Fig. 5. Qualitative results of our study. The experimental results were distinctly divided into P2P based models and Non-P2P based models. While editing
was performed globally on the Non-P2P based models, the application of the proposed M2A module to the P2P based models enabled precise targeting and
editing of areas corresponding to the target prompt.

TABLE I
PERFORMANCE OF THE PROPOSED MODULE MEASURED BY VARIOUS METRICS. IN THIS STUDY, WE CONDUCTED EXPERIMENTS DISTINGUISHING

BETWEEN P2P BASED MODELS AND NON-P2P BASED MODELS. FOR THE P2P BASED MODELS, WE COMPARED THEIR PERFORMANCE USING METRICS
AFTER APPLYING OUR PROPOSED MODULE TO THE RESULTS OBTAINED FROM THESE MODELS.

P2P based Model Non-P2P based Model

FateZero Video-P2P vid2vid-zero TAV TF CAV T2V-Zero SE VidToMe
w/o Ours w/ Ours w/o Ours w/ Ours w/o Ours w/ Ours

CLIP-Acc ↑ 36.21 59.86 +23.65 51.11 66.44 +15.33 51.66 71.72 +20.06 38.82 59.97 75.21 73.66 35.64 56.96
M.PSNR ↑ 25.29 25.35 +0.06 23.33 24.92 +1.59 19.81 20.15 +0.34 16.85 19.69 11.13 17.69 24.40 16.01

BRISQUE ↓ 40.06 37.94 -2.12 37.21 32.11 -5.10 15.99 15.09 -0.90 38.41 31.46 22.09 25.12 24.20 36.28

TABLE II
USER PREFERENCES FOR THE PROPOSED MODULE IN THE FATEZERO [9], VIDEO-P2P [7], AND VID2VID-ZERO [8] MODELS. HIGHER RATINGS WERE

RECORDED FOR THE RESULTS WHEN THE PROPOSED MODULE WAS ADDED.

Text Alignment ↑ Stucture Preserving ↑ Realism & Quality ↑ Temporal Consistency ↑
FateZero [9] 19.07 25.84 31.07 26.66

FateZero [9] + Ours 80.92 +61.85 74.15 +48.31 68.92 +37.85 73.33 +46.66

Video-P2P [7] 19.69 27.69 28.76 30.66
Video-P2P [7] + Ours 80.30 +60.61 72.30 +48.61 71.26 +42.50 69.33 +38.66

vid2vid-zero [8] 12.30 29.53 28.00 24.88
vid2vid-zero [8] + Ours 87.69 +75.39 70.46 +40.93 72.00 +44.00 75.11 +50.22

applied, and the results of the non-P2P based model. The
Non-P2P based video editing models were aligned with the
target prompt but exhibited editing in areas other than the
intended parts, resulting in a loss of overall structure in
the edited video. P2P based video editing models, through
manipulation of the attention map, achieve maintenance of the
structure of the input video. However, they struggle to estimate
precise motion words and overall attention maps, therefore not
perfectly achieving the desired edits from the target prompt.
We confirmed that accurate editing was performed when using

the enhanced attention map through the proposed method for
video editing. In addition, we observed that the structure of
the input frames was preserved while only the desired areas
were effectively edited. Therefore, it demonstrates the general
applicability of P2P-based models and improvement in the
performance of existing T2V models.

Before editing, the user specifies the desired direction
through the provided GUI. Using this input, the direction
vector and the angle between the vector and the origin are
extracted. The proposed module rotates the optical flow based
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Fig. 6. Direction Guidance method for objects moving in the direction
specified by the user.

on the extracted angle and then generates the motion map. Fig.
6 illustrates an example where editing is performed using the
motion representing movement in the user-specified direction.
By applying the proposed module to existing editing models,
the results confirm that edits are performed accurately in the
direction specified by the user.

C. Quantitative Results

We quantitatively evaluated the results of 20 videos us-
ing three metrics: CLIP-Acc [35], Masked PSNR [7], and
BRISQUE [36]. The evaluation compared three settings: (1)
the original P2P-based models, (2) P2P-based models with
the proposed M2A module applied, and (3) Non-P2P-based
models.

Table I demonstrates that applying the proposed mod-
ule to P2P-based models significantly improved CLIP-Acc
scores. For example, FateZero’s CLIP-Acc increased from
36.21 to 59.86, and the vid2vid-zero score increased from
51.66 to 71.72. These results indicate that the M2A module
improves the semantic understanding of target prompts. Non-
P2P-based models, such as TF [10], CAV [11], and T2V-
Zero [12], achieved comparable or higher CLIP-Acc scores.
However, this improvement can be attributed to unintended
edits throughout theame, rather than accurate edits focused
solely on the target regions.

The Masked PSNR results show a slight improvement when
applying the M2A module to P2P-based models, indicating
better structural integrity in non-edited regions. For example,
FateZero’s score increased marginally from 25.29 to 25.35,
while Video-P2P showed a more notable improvement of
+1.59. In contrast, Non-P2P models recorded lower Masked
PSNR scores overall, likely due to unintended edits in non-
target areas. An exception is SE [24], which exhibited higher
Masked PSNR scores, but this is likely because the edits were
incomplete, leaving most of the input video unchanged.

BRISQUE scores for P2P-based models improved after
applying the M2A module, reflecting better visual qual-
ity in edited videos. Although Non-P2P-based models also
showed improved BRISQUE scores, actual editing results
often revealed unrealistic or incomplete edits, with unintended
changes throughout the frame. This suggests that higher

Fig. 7. We conducted experiments to observe the results of applying the
Attention-Motion Swap and Attention-Motion Fusion of the M2A module
individually. The results showed that utilizing both models together achieved
the best performance.

BRISQUE scores in Non-P2P models may not accurately
reflect editing quality.

In summary, the M2A module demonstrates its effective-
ness by significantly enhancing CLIP-Acc scores, maintain-
ing structural integrity as evidenced by Masked PSNR, and
improving visual quality measured by BRISQUE. These im-
provements are primarily attributed to the accurate motion map
generated by the M2A module, which minimizes unintended
edits in non-target regions and ensures precise editing aligned
with the target prompt. The results, shown in Fig. 5 and Table
I, underscore the superiority of the M2A module in achieving
more accurate and meaningful video edits.

D. User Study

To address the possibility that evaluation metrics may not
fully capture human perception, we conducted a user study.
In this study, we compared the proposed module with existing
models, including FateZero [9], Video-P2P [7], and vid2vid-
zero [8], using a total of 20 videos. These videos were pre-
sented to 60 participants, along with the target prompt, input
video, and the output video from each model. Participants were
asked to evaluate their preferences based on four criteria: (1)
Structure Preservation, (2) Text Alignment, (3) Quality, and
(4) Temporal Consistency.

The results presented in Table II demonstrate that the
proposed M2A module outperformed all models across all
evaluation criteria. These results can be attributed to the
comprehensive improvements introduced by the M2A module.
Specifically, the M2A module effectively enhances the inac-
curate attention map of motion prompts, improving alignment
with the target prompt while maintaining the structure of
non-target regions. These capabilities address common issues
observed in existing models, such as unintended edits, poor
prompt alignment, and low temporal consistency.
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TABLE III
WE EVALUATED THE PERFORMANCE OF THE M2A MODULE BY

MEASURING CLIP-ACC, MASKED PSNR, AND BRISQUE FOR THE
RESULTS OF APPLYING ATTENTION-MOTION SWAP, ATTENTION-MOTION
FUSION, AND THE INTEGRATED APPROACH COMBINING BOTH METHODS.

Video-P2P Only Swap Only Fusion Video-P2P+Ours

CLIP-Acc ↑ 26.12 26.23 26.68 27.29
M.PSNR ↑ 22.75 25.57 26.45 27.31

BRISQUE ↓ 42.32 29.60 27.25 23.68

E. Ablation Study

We conducted various ablation studies to comprehensively
evaluate the performance of the M2A module. Through these
experiments, we confirmed that our proposed method signifi-
cantly improves the performance of the existing video editing
model.

1) Effect of M2A Module: In this study, we conducted
various experiments to demonstrate the effect of the M2A
module. For each of the Attention-Motion Swap and Attention-
Motion Fusion components of the M2A module, we separately
examined the impact of the motion map on enhancing the
attention map.

a) Attention-Motion Swap: In Fig. 7, “Only Attention-
Motion Swap”, performance was improved by swapping the
attention map of the motion prompt with motion map. When
only the attention map of motion words was enhanced, it
showed better editing than the Video-P2P [7], but there is a
limitation as overall attention is not improved.

b) Attention-Motion Fusion: In “Only Attention-Motion
Fusion”, motion information is incorporated by adjusting with
the Fusion score between the attention map and the motion
map, showing better editing results than Video-P2P [7]. How-
ever, because the attention map of the motion prompt was not
accurately estimated, it was injected with a low score. The
results confirm the inadequacy of enhancing the attention maps
with only Attention-Motion Fusion. As shown in Table III, our
proposed module, which integrates the Attention Motion Swap
and Attention Motion Fusion, effectively incorporates motion
map information into the attention map. When each method is
applied individually, for instance Only Swap or Only Fusion,
there is a marked improvement in CLIP-Acc, Masked PSNR,
and BRISQUE compared to the baseline called Video P2P.
Notably, when both methods are employed together, referred
to as Video P2P plus Ours, the approach achieves the highest
performance across all three metrics and thus demonstrates the
effectiveness of the proposed method.

c) Fusion Score: In this study, we utilized a total of
eight Fusion Metrics to calculate the Fusion Score between
the attention map and the motion map for Attention-Motion
Fusion. Metrics suitable for the image domain, spectral do-
main, and information domain were employed to measure the
associations. Overall, the experimental results demonstrate that
the metrics in the spectral domain did not produce meaningful
improvements either quantitatively or qualitatively compared
to the image and information domains. This observation is
reflected in Fig. 8 and Table IV.

TABLE IV
EVALUATION ON VARIOUS FUSION METRICS USING CLIP-ACC [9],

MASKED-PSNR [7], BRISQUE [36].

Fusion Metrics CLIP-Acc ↑ M.PSNR ↑ BRISQUE ↓

Image
Domain

Squred-Diff 83.18 21.58 28.92
N.Squred-Diff 62.56 21.26 29.46

Cross-Corr 62.80 21.27 29.42
N.Cross-Corr 82.56 21.98 25.42

Corr-Coeff 62.70 21.26 29.52
N.Corr-Coeff 82.90 22.06 26.04

Spectral
Domain SAM 62.74 21.34 28.86

Information
Domain MI 83.65 22.31 23.85

In the image domain, we calculated the Fusion Score
using “Squared Difference” [29], “Cross Correlation” [30],
“Correlation Coefficient” [31], and their normalized versions.
As shown in image domain of Table IV and Fig. 8, the
non-normalized version of Squared Difference consistently
outperformed the normalized version across all quantitative
evaluation metrics. This result suggests that Squared Differ-
ence, which is based on absolute pixel-level differences, is less
sensitive to normalization and highlights that normalization
may not always be the optimal choice in certain contexts. On
the other hand, the normalized versions of Cross Correlation
and Correlation Coefficient recorded higher evaluation scores
compared to their non-normalized counterparts, producing
semantically more precise and visually more realistic editing
results. This indicates that normalization effectively addresses
the scale mismatches between the attention map and the
motion map, thereby enabling a more accurate comparison
of their structural associations. These findings suggest that
while normalization may not always be necessary for pixel-
level evaluations, it is particularly beneficial when assessing
structural relationships between maps, underscoring its impor-
tance in specific contexts of association measurement within
the image domain.

Among all the metrics used across different domains,
MI [33] demonstrated the most outstanding performance
both quantitatively and qualitatively. MI achieved the highest
scores not only in quantitative evaluations such as CLIP-Acc,
Masked-PSNR, and BRISQUE but also in visual assessments
of video quality. This is because MI effectively captures the
semantic associations and nonlinear relationships between the
attention map and the motion map, surpassing simple pixel-
value comparisons. Since the attention map and motion map
are not standard images but instead contain meaningful data
such as prompts, frames, and motion details, MI was deemed
the most suitable Fusion Metric for enhancing semantic edit-
ing.

2) Comparison on Optical Flow Estimation Models: We
compare the results of applying the optical flow estimation
algorithms: Unimatch [14] and RAFT [28] to our M2A
module. As can be seen in Fig. 9, Unimatch [14] allows
for more precise optical flow estimation compared to RAFT
[28]. However, applying both optical flow estimation to our
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Fig. 8. Results from using various Composition Metrics to measure the correlation score in the Attention-Motion Fusion within the M2A module. Among
the different metrics, the results obtained using Mutual Information appeared to be the most realistic.

Fig. 9. The results of Video-P2P [7] and our M2A module using different
optical flow algorithms: RAFT [28] and UniMatch [14]

module, it shows minor differences in editing results. This
result demonstrated that identifying the overall motion of
objects is more crucial than estimating detailed motion within
specific areas.

V. CONCLUSION

We propose an M2A module to inject an estimated motion
map into the attention map of the image diffusion model.
Injecting motion map into attention map with our proposed
M2A module improves general video editing performance
because the motion prompt attention map becomes apparent.
This is shown by improving the evaluation metrics. In the
future, we will conduct research in the direction of editing
areas where complex optical flow is generated due to various
camera movements.
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